Консультация для преподавателей 5 класса (январь)
Тема консультации: «ДРОБИ»
Дидактическая основа
Дидактической основой непрерывного курса математики «Учусь учиться» является дидактическая система деятельностного метода обучения «Школа 2000...». Ее главной особенностью является то, что знания не даются учащимся в готовом виде, а организуется их самостоятельное открытие детьми. Такой подход обеспечивает высокий уровень математической подготовки, развивает мышление учащихся, их способности, повышает интерес к изучению математики, обеспечивают личностные и метапредметные результаты образования, соответствующие ФГОС.
Содержание консультации
В соответствии с планированием учебного материала по курсу математики «Учусь учиться» для 5 класса в январе продолжается работа с третьей главой «Дроби». Изучаются § 1. «Понятие дроби» (П.3.1.2 «Основное свойство дроби. Преобразование дробей»; П.3.1.3 «Сравнение дробей») и § 2. «Арифметика дробей» (П.3.2.1 «Сложение и вычитание дробей»), содержание которых продолжает развитие числовой содержательно-методической линии курса.
Вместе с тем, в процессе изучения этих пунктов параллельно развиваются и все остальные линии курса. Такой подход является общим для данного курса: на каждом этапе его изучения, параллельно с ведущей линией, по которой идет расширение понятийной базы, закрепляются и отрабатываются знания и умения по всем остальным разделам курса.
Основные содержательные цели:
- вывести основное свойство дроби, сформировать умение сокращать дроби, приводить дроби к новому знаменателю и числителю;
- сформировать умение сравнивать дроби с помощью приведения дробей к одинаковому числителю, знаменателю, промежуточного числа, дополнения дроби до 1, «перекрёстного» правила;
- сформировать умение складывать и вычитать дроби (общий случай).
Тематическое планирование
В соответствии с принципом минимакса дидактической системы деятельностного метода «Школа 2000…» организовать работу по учебнику 5 класса возможно в условиях различных учебных планов образовательных учреждений. Поэтому тематическое планирование по изучению данного курса разработано для 5 ч и для 6 ч в неделю. При 6 ч в неделю добавочные часы идут на выполнение дополнительных заданий и уроки рефлексии, позволяющие учащимся лучше усвоить изучаемый материал.
Тематическое планирование разработано в двух вариантах: для учителей, закончивших ознакомительные курсы по программе «Школа 2000...» и работающих на базовом (содержательном) уровне реализации дидактической системы «Школа 2000...», и для учителей, закончивших углубленные курсы по программе «Школа 2000...» и работающих на технологическом уровне реализации дидактической системы «Школа 2000...».
Мы предлагаем Вам скачать тематическое планирование на III четверть (5 ч в неделю).
(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")
Методические рекомендации к организации учебного процесса
Глава 3. «Дроби»
§ 1. Натуральные числа и дроби. П.2 Основное свойство дроби. Преобразование дробей
1) В результате изучения пункта 3.1.1 учащиеся повторили известные им из курса начальной школы сведения о дробях. Среди них были зафиксированы правила, которые будут уточняться для общего случая в ходе изучения третьей главы: правила сравнения дробей с одинаковыми числителями, знаменателями, правило сложения и вычитания дробей с одинаковыми знаменателями. В связи с этим учащиеся знакомятся с основным свойством дроби в пункте 3.1.2 «Основное свойство дроби. Преобразование дробей».
2) Для открытия основного свойства дроби можно использовать дополнительные свойства умножения и деления (делимое и делитель можно умножать и делить на одно и то же натуральное число) и знание, что результат деления можно записать в виде дроби, а также умение изображать дроби на числовом луче.
3) Учащиеся учатся применять основное свойство дроби для преобразования дробей – сокращение дроби и приведения дроби к новому числителю (знаменателю). После знакомства учащихся с таким преобразованием дроби, как сокращение дроби, вводится понятие несократимой дроби.
4) Для сокращения дробей предлагается использовать три способа: сокращать дробь на НОД числителя и знаменателя, сокращать дробь последовательно на общие делители (с использованием признаков делимости) или представлять числитель и знаменатель в виде произведения.
5) При выполнении системы заданий №№ 66, 67 (б), 86 – 88 идет последовательная работа по построению алгоритма приведения дробей к наименьшему общему знаменателю (при этом сначала формируется представление о новом знаменателе, как о числе кратном старому знаменателю, затем вводится понятие дополнительных множителей, после чего, при выполнении № 87, вводится понятие общего знаменателя двух дробей и формируется понятие общего знаменателя как общего кратного знаменателей). И только после такой подготовительной работы ставится проблема приведения дробей к наименьшему общему знаменателю. При выполнении №№ 88 – 89 формируется умение применять полученный алгоритм.
6) Аналогичная работа может быть проведена для построения алгоритма приведения дробей к новому числителю.
7) В третьей главе пятиклассникам предлагаются задания, содержащие алгебраические дроби. Так, при отработке умения преобразовывать дроби учащимся могут быть предложены задания сократить алгебраическую дробь, числитель которой имеет вид многочлена (№№ 83 (1, 2, 3), 92). При выполнении заданий такого уровня учителю следует реализовывать принцип минимакса: работать на уроке, ориентируясь на сильных учеников на высоком уровне сложности, оценивая при этом только успех, а контролировать усвоение материала каждым учащимся на уровне минимума, определенного в стандарте.
§ 1. Натуральные числа и дроби. П.3 Сравнение дробей
8) В третьем пункте «Сравнение дробей» учащиеся строят разные способы сравнения дробей: приведение дробей к наименьшему общему знаменателю и к наименьшему общему числителю (№№ 135 – 142). В данном пункте рассматриваются и «хитрые приемы», которые в некоторых случаях удобнее использовать для сравнения дробей: это способ сравнения дробей с единицей (неправильная дробь больше правильной), с промежуточным числом (с половиной), метод дополнения дроби до 1 («ближе к единице»), «перекрёстное» правило.
9) Для отработки приема сравнения с промежуточным числом (1/2) выполняется № 145. При этом учитель может использовать такие модели, как числовой луч или отрезок. После сравнения данных чисел с половиной на моделях учитель может задать вопросы о сравнении пар дробей, одна из которых больше половины, а другая – меньше. Учащимися делается вывод об использовании промежуточного числа для сравнения дробей. Например, можно записать, что 41/80 > 245/504, потому что первая дробь больше половины, а вторая – меньше.
10) Для знакомства учащихся с приемом сравнения правильных дробей путем определения, какая из них «ближе к единице», а значит, и больше (№ 143), можно поступить следующим образом: учащимся предлагается проанализировать данные дроби. Учащиеся должны заметить, что числитель отличается от знаменателя на 1, после чего можно задать вопрос, к какому числу близки данные дроби. Затем учитель предлагает изобразить первую пару дробей и единицу на числовом луче и показать, сколько «не хватает» дроби 8/9 до целого и сколько «не хватает» 15/16, то есть выяснить, какие дроби дополнят данные до единицы. Учащиеся фиксируют, что дополнения составляют в первом случае девятую часть, а во втором – шестнадцатую часть единичного отрезка. Делается вывод: дробь с большим знаменателем «ближе» к единице, а значит, больше. Следующие пары дробей сравниваются уже без числового луча (№ 144).
11) Также учащиеся узнают общее правило сравнения дробей – «перекрёстное» правило (a/b < c/d <=> ad < bc) – и учатся его применять (№ 148). Из этого общего правила сравнения дробей следует условие равенства дробей a/b = c/d <=> ad = bc, с которым нужно познакомить учащихся. Необходимо заострить внимание учащихся на этом утверждении, так как данное условие позволит им решать уравнения нового вида, а в дальнейшем будет использоваться в 6 классе при изучении тем «Отношение» и «Пропорция». Условие равенства дробей применяется при выполнении № 151.
12) После изучения правил сравнения обыкновенных дробей учащиеся получают возможность построить правила сравнения любых смешанных чисел. Для формирования умения применять правила сравнения смешанных чисел учащимся предлагается выполнить № 147 (7, 8).
13) Таким образом, пятиклассники могут выполнить сравнение дробей следующими способами: приведение дробей к наименьшему общему знаменателю, наименьшему общему числителю, пользуясь свойством «любая неправильная дробь больше правильной», сравнение с промежуточным числом (с 1/2), метод «ближе к 1» и универсальный способ – общее правило сравнения дробей. Использование различных способов для сравнения дробей реализует принцип вариативности ДСДМ, который предполагает формирование у учащихся способностей к систематическому перебору вариантов и адекватному принятию решений в ситуациях выбора (№ 147).
14) Способы сравнения дробей используются учащимися для решения задач (№ 153, № 154).
15) При обсуждении № 155 появляется возможность формировать не только предметные, но и личностные результаты обучения, которые соответствуют новым целям образования. В заданиях учебника математики курса «Учусь учиться» заложены представления о дружбе, доброте, чести, трудолюбии и других ценностных качествах человека, которые опосредованно оказывают эмоциональное воздействие на детей и способствуют выработке морально-этических норм и правил. При выполнении данного задания у учителя появляется возможность выслушать мнения учащихся и подвести их к собственным выводам о самооценке человека.
§ 2. Арифметика дробей. П.1 Сложение и вычитание дробей
16) В начальной школе учащиеся научились складывать и вычитать дроби с одинаковыми знаменателями. В пункте «Сложение и вычитание дробей» они учатся находить значение суммы и разности любых дробей.
17) Перед выполнением пробного задания можно предложить учащимся проанализировать данную сумму 2/21 + 6/35. Пятиклассники фиксируют, что слагаемыми являются дроби с разными знаменателями. При выполнении задания ученики фиксируют затруднение: «не можем найти сумму» или «не можем обосновать своё решение». Причиной затруднения является отсутствие правила сложения дробей с разными знаменателями. В результате работы учащиеся строят алгоритм сложения и вычитания любых дробей:
18) На последующих уроках учащиеся применяют алгоритм сложения и вычитания обыкновенных дробей для решения уравнений, нахождения значения буквенных выражений при заданном значении букв, решения задач.
19) Для обыкновенных дробей фиксируются и применяются переместительное и сочетательное свойства сложения и правила вычитания суммы из числа и числа из суммы. (№№ 201 – 202).
Эталоны
20) В результате изучения данных тем у учащихся появляются следующие эталоны: основное свойство дроби, алгоритм приведения дробей к наименьшему общему знаменателю (числителю), несколько способов сокращения дробей, понятие несократимой дроби, правила сравнения дробей, алгоритмы сложения и вычитания дробей (общий случай). Данные эталоны приведены в учебном пособии Л.Г. Петерсон, Л.А. Грушевской «Построй свою математику», которое предусматривает специальную работу с ними.
Приведем пример эталона из указанного пособия:
Методические рекомендации по планированию уроков
При организации учебного процесса необходимо учитывать, что выполнение всех заданий из учебника не является обязательным. Принципы минимакса и вариативности обеспечивают возможность обучения по курсу математики программы «Школа 2000…» детей разного уровня подготовки, в том числе и высокого. Поэтому уровень и количество заданий, включенных в учебник, определялись в соответствии с зоной ближайшего развития более подготовленных учащихся. Предполагается, что учитель выбирает для работы те задания, которые соответствуют уровню подготовки детей и задачам конкретного урока.
Мы предлагаем Вам скачать методические рекомендации по планированию уроков.
С примерами организации уроков по изучению темы «Дроби» Вы можете познакомиться в серии дисков со сценариями уроков в технологии деятельностного метода к учебнику математики для 5 − 6 классов основной школы авторов Г.В. Дорофеева, Л.Г. Петерсон по программе «Учусь учиться».
Предлагаем Вашему вниманию вариант сценария урока по рассматриваемым темам, в котором описан возможный способ организации самостоятельной познавательной деятельности учащихся на основе технологии деятельностного метода обучения «Школа 2000...».
Урок 80
Тип урока: ОНЗ
Тема: «Сокращение дробей»
Автор: Л.А. Грушевская
Основные цели:
1) cформировать понятия сократимой и несократимой дроби, умение сокращать дроби на основе использования основного свойства дроби;
2) повторить и закрепить понятия делителя и кратного, признаки делимости, свойства делимости произведения, чтение и нахождение значений буквенных выражений, тренировать умение строить математические модели текстовых задач.
Мы предлагаем Вам cкачать сценарий урока
(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")
Уважаемые коллеги! В соответствии с Вашими просьбами предлагаем Вам скачать решение задач на смекалку, которые входят в данные параграфы.
(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")
Если у Вас возникли какие-либо вопросы, напишите нам, заполнив форму обратной связи.
Мы свяжемся с Вами.