Консультация для преподавателей 7 класса (февраль)

Тема консультации: «ФОРМУЛЫ СОКРАЩЕННОГО УМНОЖЕНИЯ.
РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ»

Дидактическая основа

Дидактической основой непрерывного курса математики «Учусь учиться» является дидактическая система деятельностного метода обучения «Школа 2000...». Ее главной особенностью является то, что знания не даются учащимся в готовом виде, а организуется их самостоятельное открытие детьми. Такой подход обеспечивает высокий уровень математической подготовки, развивает мышление учащихся, их способности, повышает интерес к изучению математики, обеспечивают личностные и метапредметные результаты образования, соответствующие ФГОС.

Содержание консультации

В соответствии с планированием учебного материала по курсу математики «Учусь учиться» для 7 класса в феврале продолжается работа с четвертой главой «Введение в теорию многочленов». Изучаются три пункта второго параграфа:
4.3.2. Разность квадратов;
4.3.3. Куб суммы и разности;
4.3.4. Сумма и разность кубов.
После чего начинается работа с четвертым параграфом «Разложение многочленов на множители», из которого изучаются пункты:
4.4.1. Вынесение общего множителя за скобки;
4.4.2. Способ группировки;
4.4.3. Формулы сокращенного умножения и разложение многочленов.

Основные содержательные цели

  • сформировать умение представлять разность квадратов, сумму и разность кубов в виде произведения и наоборот преобразовывать произведения многочленов определенного вида в разность квадратов, сумму и разность кубов с помощью соответствующих формул сокращенного умножения;
  • сформировать умение представлять куб суммы и разности в виде многочлена стандартного вида и наоборот преобразовывать многочлен определенного вида в куб суммы или разности с помощью соответствующей формулы сокращенного умножения;
  • сформировать умение применять формулы сокращенного умножения для алгебраических преобразований, связанных с умножением, и рационализации вычислений;
  • сформировать умение раскладывать многочлены на множители следующими способами: вынесением за скобки общего множителя, способом группировки, с помощью формул сокращенного умножения;
  • сформировать умение применять при разложении многочленов на множители различные вспомогательные приемы, такие как, перестановка слагаемых; представление члена многочлена в виде суммы или разности подобных ему членов; прибавление и вычитание одного и того же слагаемого, выделение полного квадрата;
  • сформировать умение применять разложение на множители для алгебраических преобразований, решений уравнений и рационализации вычислений.

Тематическое планирование

В соответствии с принципом минимакса дидактической системы деятельностного метода «Школа 2000…» организовать работу по данному учебнику возможно в условиях различных учебных планов образовательных учреждений. Поэтому тематическое планирование по изучению данного курса разработано в двух вариантах на 102 ч и на 136 ч. Вариант планирования, разработанный для 3 часов в неделю, обеспечивает выполнение государственного стандарта знаний, усвоение учебного содержания курса (по темам, обязательным для рассмотрения) и продвижение учащихся в развитии мышления, речи, познавательных интересов. При 4 часах в неделю содержание курса существенно расширяется.

Мы предлагаем Вам скачать тематическое планирование на 3 четверть (3 ч в неделю).

(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")


Центр системно – деятельностной педагогики «Школа 2000…» рекомендует для работы по учебнику математики для 7 класса средней школы Л.Г. Петерсон, Д.Л. Абрарова, Е.В. Чутковой использовать по возможности 4 часа в неделю.

Мы предлагаем Вам скачать тематическое планирование на 3 четверть (4 ч в неделю).

(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")



Методические рекомендации к организации учебного процесса

Глава 4. Введение в теорию многочленов

§ 3. Формулы сокращенного умножения

П. 2. Разность квадратов

1) В данном пункте учащиеся знакомятся с двумя формулами сокращенного умножения – формулой произведения суммы и разности двух выражений и формулой разности квадратов, которые, по сути, являются одинаковыми равенствами, в которых поменяли местами правую и левую части. Традиционно эта формула рассматривалась как одна – формула разности квадратов, что приводило к трудностям, возникающим у учащихся при умножении разности двух выражений на их сумму. Поэтому, чаще всего учителю приходилось регулярно использовать на уроках такой прием, как чтение данной формулы «в обратную сторону». Чтобы раз и навсегда показать учащимся, что любая из формул сокращенного умножения «работает» как справа налево, так и слева направо можно использовать материал данного пункта и специально обратить внимание учащихся на это. Можно пояснить учащимся, что для других «обратных» формул не используют отдельного названия, т.к. звучат их названия менее благозвучно, чем у формулы произведения разности и суммы двух выражений.
2) В качестве мотивации к выводу новых формул можно предложить учащимся вычислить

 за 30 секунд. После того как они не справятся с этим заданием за указанное время, пояснить, что с помощью формулы сокращенного умножения, открытой сегодня им это легко удастся.
3) Для открытия данных формул учащимся предлагается записать произведение суммы и разности а и b как многочлен стандартного вида. После этого учащимся предлагается обобщить полученное равенство для всех произведений подобного вида и сформулировать правило умножения суммы двух выражений на их разность. Опираясь на полученную формулу, учащиеся формулируют, как можно найти разность квадратов двух выражений (№ 318). Эту работу они могут выполнять самостоятельно в группах или в парах.
4) Чтобы подготовить учащихся к открытию следует актуализировать с ними правило умножения многочленов и понятие степени с показателем 2, а также понятия «сумма» и «разность». Для этого можно использовать задания №№ 316–317.
5) Чтобы показать геометрический смысл данной формулы можно использовать предметные геометрические модели прямоугольника и квадрата, предложенные в учебнике. Необходимо вырезать, прикладывать и перемещать предметные модели либо использовать возможности анимации современной техники. Это поможет учащимся с образным мышлением запомнить данные формулы.
6) Важно показать учащимся применение формул для рационализации вычислений (№№ 322, 337).
7) При 4-часовом планировании рекомендуется отвести больше времени на выполнение заданий более высокого уровня сложности (№№ 340–347).
8) Учащиеся применяют новые формулы для сокращения алгебраических дробей (№ 333), решения уравнений (№ 327, № 336), доказательства утверждений и тождеств (№№ 329, 334, 335). Для формирования умения применять формулы сокращенного умножения в учебнике и другие задания, которые предполагают решение задач с помощью уравнения (№ 339), сравнение значений выражений (№№ 342 – 343) и пр. Учитель выбирает из этих заданий те, которые считает целесообразным выполнить с учащимися.
9) При выполнении заданий на нахождение наибольшего и наименьшего значения выражений (№№ 345 – 346) следует вспомнить с учащимися необходимые свойства. Рекомендуется, после применения формулы произведения суммы выражений на их разность актуализировать, как изменяется разность при изменении ее компонентов. Свойство разности «Если значение уменьшаемого увеличить, то значение разности увеличится» и подобные ему свойства известны учащимся с начальной школы. Кроме того, рекомендуется спросить, какое наименьшее значение может принимать квадрат любого выражения (нуля).

П. 3. Куб суммы и разности

1) В данном пункте учащиеся знакомятся с двумя формулами сокращенного умножения – формулой куба суммы и куба разности.
2) Для проблематизации можно предложить учащимся записать выражение

как многочлен стандартного вида, не используя правило умножения многочленов
3) Для открытия формулы куба суммы (разности) учащимся предлагается использовать задание № 377, в котором проедложены шаги по построению новой формулы. Рекомендуется сначала дать возможность учащимся составить план открытия нового знания самостоятельно. Имея опыт, построения формулы квадрата суммы и разности данная задача является для семиклассников посильной задачей.
4) Чтобы подготовить учащихся к открытию следует актуализировать с ними правило умножения многочленов и понятие степени с показателем 3, а также понятия «куб суммы» и «куб разности». Для этого можно использовать задания №№ 374–376.
5) Важно показать учащимся применение формул для рационализации вычислений (№№ 381 – 382).
6) Для формирования умения применять формулы куба суммы и разности в учебнике предлагается целый перечень заданий, которые предполагают доказательство тождеств, нахождение значений выражений, составление и решение уравнений. Учитель выбирает из них те задания, которые считает целесообразным выполнить со своими учениками.
7) После знакомства с формулами куба суммы и куба разности с учащимися следует обобщить, что теперь им известно как возводить двучлен во 2-ю и 3-ю степени и сообщить, что существуют формулы, позволяющие возводить двучлен в более высокую степень. Можно попросить одного из «сильных» учащихся сформулировать идею вывода подобных формул. При 4-часовом планировании (либо в более подготовленных классах) рекомендуется познакомить учащихся с алгоритмом возведения двучлена в n–ю степень (№№ 399 – 400).

П.4. Сумма и разность кубов

1) В данном пункте учащиеся знакомятся с формулами суммы и разности кубов.
2) Для проблематизации можно предложить учащимся записать многочлены:

в виде произведения двух многочленов.
3) В связи с особенностями этих формул учащимся вряд ли удастся самостоятельно составить план открытия нового знания, поэтому учащимся предлагается использовать задание № 434, в котором даны шаги по построению новых формул.
4) Чтобы подготовить учащихся к открытию следует актуализировать с ними правило умножения многочленов и понятие степени с показателем 3, а также понятия «сумма кубов» и «разность кубов». Для этого можно использовать задания №№ 432–433.
5) Важно показать учащимся применение формул для рационализации вычислений (№№ 439).
6) Для формирования умения применять формулы суммы и разности кубов в учебнике также как и в других пунктах третьего параграфа предлагается перечень заданий, которые предполагают доказательство тождеств, нахождение значений выражений, составление и решение уравнений с использованием данных формул. Учитель выбирает из них те задания, которые считает целесообразным выполнить со своими учениками.
7) При 4-часовом планировании рекомендуется уделить больше времени на выполнение заданий более высокого уровня сложности (№№ 453–460).
8) При выполнении задания № 459 рекомендуется сначала проанализировать данные равенства, задать, например, следующие вопросы:
  • Что записано в левой части равенства? (Произведение многочленов.)
  • Что записано в правой части равенства? (Многочлены.)
  • Как перейти от произведения многочленов к многочлену? (Перемножить данные многочлены.)
  • Как можно рационализировать умножение алгебраических выражений? (Формулы сокращенного умножения помогают при таких преобразованиях.)
  • Какие формулы вы здесь сразу видите, подчеркните соответствующие выражения.
После устного разбора учащиеся самостоятельно выполняют данные преобразования и проверяют себя по образцу (естественно образец должен демонстрировать не только самый рациональный способ, но и все возможные способы, которые могли использовать семиклассники). Можно подготовить образец заранее либо вызвать на закрытую доску сильного ученика.
Полезным будет показать рациональные способы выполнения данных преобразований, для этого можно воспользоваться заранее заготовленными образцами. Если по какой-либо причине подготовить образцы не удастся можно вызывать к доске не одного, а нескольких учащихся, которые бы параллельно доказывали тождество. После выполнения задания разобрать другие способы, которыми пользовались ученики. Кроме того, можно после того как основная часть класса закончит доказательство, следует поинтересоваться, кто нашел другой, более рациональный способ доказательства. Эти способы демонстрируются с помощью специального технического оборудования либо идея преобразования проговаривается вслух.
Целесообразно на примере а) сравнить два способа доказательства тождеств:
1) приведение левой части к правой, при котором придется применить формулу произведения суммы выражений на их разность и в полученном произведении «увидеть» формулу разности кубов;
2) приведение правой части к левой, при котором в разности шестых степеней можно «увидеть» разность кубов и разложить эту разность на произведение двучлена на трехчлен, а полученный двучлен разложить на сумму и разность по формуле разности квадратов.
Второй способ рекомендуется показать после применения первого. На данном этапе он рассматривается с целью опережающей подготовки учащихся к изучению темы «Разложение на множители с помощью формул сокращенного умножения».

§ 4. Разложение многочлена на множители

П.1 Вынесение общего множителя за скобки

1) В данном пункте учащиеся учатся выносить общий множитель за скобки, они уже имеют опыт простейших преобразований такого рода. Так, для первичного формирования умения приводить подобные слагаемые учащиеся выносили общий множитель за скобки на основании распределительного закона умножения.
2) В данном пункте у учащихся формируется понятие разложения многочлена на множители. Нужно отметить, что под разложением на множители понимается разложение на буквенные множители. Так, вынесение за скобки числового множителя не является операцией разложения на множители. Например, представление многочлена 2a + 2ac в виде произведения 2(а + ас) не является разложением на множители, а в виде 2а (1 + с) является. Этот «нюанс» можно обговорить с учащимися при выполнении № 489.
3) Здесь же формируется умение раскладывать на множители путем вынесения общего множителя за скобки. Теперь учащиеся выполняют это преобразование на основании четко сформулированного правила: чтобы вынести за скобки общий множитель с можно в скобках записать многочлен, каждый член которого получен в результате его деления на с. Можно использовать предложенный в учебнике алгоритм вынесения за скобки общего множителя (в более подготовленном классе учащиеся могут построить его самостоятельно – № 493).
4) В связи с тем, что учащиеся уже знакомы с вынесением за скобки общего множителя, для проблематизации можно предложить учащимся сформулировать, что такое «разложение многочлена на буквенные множители».
5) Для построения логики открытия при подготовке к уроку учитель может воспользоваться заданием № 488.
6) Чтобы подготовить учащихся к открытию следует актуализировать с ними распределительное свойство умножения, использование этого свойства для рационализации вычислений. Для этой целей рекомендуется использовать задания №№ 485 – 488.
7) Задание № 497 готовит учащихся к следующему пункту. Часто у учащихся возникает сложность с вынесением за скобки общего множителя, который является многочленом. Чтобы преодолеть это возможное затруднение рекомендуется выполнить это задание с подчеркиванием общего множителя.
8) Задание № 498 показывает применение нового преобразования для решения уравнений. Особо следует подчеркнуть, что без разложения на множители уравнения данного вида учащиеся пока решить не могут.
9) Важно показать учащимся применение правила вынесения общего множителя для рационализации вычислений (№№ 496, 502).

П.2 Способ группировки

1) В данном пункте учащиеся учатся применять еще один способ разложения на множители – способ группировки.
2) Для проблематизации можно предложить учащимся разложить на множители многочлен:

Причиной возникшего затруднения будет то, что данные одночлены не имеют общего множителя. Чтобы преодолеть свое затруднения учащиеся должны будут открыть новый способ разложения на множители.
3) Чтобы подготовить учащихся к открытию рекомендуется выполнить задание № 533, в котором учащимся придется переставлять слагаемые местами и группировать произведения, имеющие одинаковые множители, а также № 535. Позже эти идеи помогут семиклассникам построить новый способ самостоятельно.
4) Алгоритм способа группировки, построенный учащимися, может иметь вид:
1) Объединить члены многочлена в группы таким образом, чтобы в каждой группе были общие множители.
2) Найти общий множитель в каждой группе и вынести его.
3) Найти общий множитель в новом многочлене и вынести его.
5) Подготовка, проведенная в предыдущем пункте, дает возможность наряду с простейшими ситуациями использования способа группировки рассмотреть и случаи, которые требуют специальных приемов:
  • перестановка слагаемых;
  • представление члена многочлена в виде суммы или разности подобных ему членов;
  • прибавление и вычитание одного и того же слагаемого.
Последним двум приемам рекомендуется посвятить отдельный урок открытия нового знания. Эти приемы будут использоваться учащимися в дальнейшем и для других способов разложения на множители.
6) Для проблематизации можно предложить учащимся разложить на множители с использованием способа группировки многочлены:
7) Для организации открытия можно воспользоваться учебником. Учащиеся самостоятельно отбирают и рассматривают примеры 2, 3 и 4 из текста. После работы с текстом учащимся предлагается выполнить задания на пробное действие.
8) Задания №№ 546, 554 показывают применение нового преобразования для решения уравнений. Причем, если раньше указание разложить на множители давалось в задании, то теперь такого указания в тексте задания нет. Анализируя вид уравнения, учащиеся должны понимать, что нужно преобразовать левую часть уравнения в произведение многочленов. Особо следует подчеркнуть, что без разложения на множители уравнения данного вида учащиеся пока решить не могут.

П.3 Формулы сокращенного умножения и разложение многочленов на множители

1) В данном пункте учащиеся учатся раскладывать на множители многочлены с использованием формул сокращенного умножения. Умение использовать формулы, в которых та или иная формула представлена в явном виде, должно быть уже сформировано в предыдущем параграфе. Теперь с учащимися разбираются случаи, когда для применения формулы сокращенного умножения необходимо выполнить предварительное преобразование исходного многочлена.
2) Учащиеся учатся видеть в степенях «квадраты» и «кубы», группировать слагаемые для получения нужной формулы, пользуются уже известными приемами: перестановка слагаемых и прибавление и вычитание одного и того же слагаемого.
3) Для этапа актуализации рекомендуется использовать задания №№ 583 – 585, при выполнении которых учащиеся повторят те понятия и способы действий, которые понадобятся им на уроке.
4) № 586 можно использовать для проблематизации. Затруднение, возникшее при выполнении этого задания, потребует новых приемов для применения разложения на множители (либо отбора уже известных приемов для применения в новой ситуации).
5) При изучении данного пункта учащиеся знакомятся с таким приемом, как выделение полного квадрата, который дает возможность применить формулы сокращенного умножения (№ 588 (л–н), № 595(д), № 600 готовят учащихся к этому способу, № 601 требует применения способа). Естественно требовать от каждого ученика умения применять данный способ нельзя. Однако более способные учащиеся должны получить возможность познакомиться с приемом выделения полного квадрата. В восьмом классе этот прием даст возможность вывести формулу для решения квадратных уравнений.

Эталоны

В результате изучения данных пунктов учащиеся знают следующие формулы сокращенного умножения: формулу произведения суммы двух выражений на их разность, формулу разности квадратов; формулы куба суммы и куба разности; формулы суммы и разности кубов и умеют их применять. Учащиеся имеют возможность познакомиться с треугольником Паскаля и соответствующим алгоритмом для возведения двучлена в n–ю степень. Учащиеся знают, что значит разложить многочлен на множители и следующие способы разложения на множители: вынесением за скобки общего множителя, способом группировки, с помощью формул сокращенного умножения и умеют их применять. Учащиеся имеют возможность познакомиться с различными вспомогательными приемами, которые помогают применять вышеперечисленные способы разложения на множители.

Методические рекомендации по планированию уроков

При организации учебного процесса необходимо учитывать, что выполнение всех заданий из учебника не является обязательным. Принципы минимакса и вариативности обеспечивают возможность обучения по курсу математики программы «Школа 2000…» детей разного уровня подготовки, в том числе и высокого. Поэтому уровень и количество заданий, включенных в учебник, определялись в соответствии с зоной ближайшего развития более подготовленных учащихся. Предполагается, что учитель выбирает для работы те задания, которые соответствуют уровню подготовки детей и задачам конкретного урока.
Предлагаем Вашему вниманию вариант сценария урока по рассматриваемым темам, в котором описан возможный способ организации самостоятельной познавательной деятельности учащихся на основе технологии деятельностного метода обучения «Школа 2000...». В отличие от уроков, опубликованных нами в предыдущих консультациях, этот урок является примером урока рефлексивного типа. Подробнее с методикой подготовки и проведения уроков такого типа в 7-9 классах основной школы вы можете познакомиться в разделе Модификация технологии деятельности метода обучения на уроках разной целевой направленности в 7–9 классах основной школы нашей вводной консультации.

Урок 60

Тип урока: Р
Тема урока: «Формулы сокращённого умножения»
Автор: Л.А Грушевская
Основные содержательные цели:
1) организовать самоконтроль умения применять формулы сокращённого умножения при выполнении заданий различного характера;
2) тренировать умение решать задачи на движение.

Мы предлагаем Вам cкачать сценарий урока

(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")



Уважаемые коллеги! Предлагаем вам скачать решение некоторых задач на смекалку, которые входят в данные параграфы.

(Для того, что бы скачать файл, нажмите правой кнопкой мыши на ссылку, и выберите в меню пункт "Сохранить объект как...")


Если у Вас возникли какие-либо вопросы, напишите нам, заполнив форму обратной связи.
Мы свяжемся с Вами.